
IMAGE: An approach to building standards-based enterprise Grids

Gabriel Mateescu1 and Masha Sosonkina2

1Research Computing Support Group 2Scalable Computing Laboratory

National Research Council USDOE Ames Laboratory

Ottawa, ON K1A 0R6, Canada Ames, IA 50011, USA

gabriel.mateescu@nrc.gc.ca masha@scl.ameslab.gov

Abstract

We describe a system for aggregating heterogeneous
resources from distinct administrative domains into
an enterprise-wide compute grid, such that the ag-
gregated resource provides the services of reliable and
flexible queuing, scheduling, execution, and monitor-
ing of batch applications. The system provides schedul-
ing across multiple cluster Grids, user account mapping
across domains, and file staging, thereby enabling the
consolidation of organization-wide distributed resources
into a virtual resource, while preserving local control of
resources. The concept of abstract queue, as the unit of
aggregating heterogeneous resources, is introduced and
instantiated for distributed resource scheduling. The
proposed system is an open source, standards-based al-
ternative to similar commercial systems.

1 Introduction

A compute Grid is a set of hardware, software and
human resources that are used to obtain computational
results by running batch applications (or jobs) and
moving related data. Compute Grids can be divided
into four categories [20, 21], based on their geographic
and organizational scope and on resource ownership
(multiple ownership includes multiple administrative
domains and groups of users): cluster Grids, campus
Grids, enterprise Grids, and global Grids. A cluster
Grid (also called department Grid) contains resources
located at one site within one organization, and be-
longing to a single owner. A campus Grid differs from
a cluster Grid in that its resources belong to multiple
owners. Unlike campus Grids, enterprise Grids con-
tain resources located at multiple sites. Finally, global
Grids contain resources from multiple organizations.

Distributed Resource Management (DRMS) middle-
ware controls access to, and manages, the resources.
DRMS for cluster Grids include PBS Professional [3],
Torque and MOAB [5] and Sun N1 Grid Engine [22].
The Globus Toolkit [9, 10] provides services such a job
execution, data management, and resource discovery
for global Grids. While global Grids have been pio-
neered by the academic and research communities (e.g.,
TeraGrid [18] and CoreGrid [6]), enterprise Grids are
offered mostly as commercial products ([17, 22]). Thus,
to provide a foundation for global Grids, there is a need
for open-source enterprise grids solutions.

We describe a system for aggregating heteroge-
neous resources from distinct administrative domains
into an enterprise compute grid, such that the aggre-
gated resource provides the services of reliable and
flexible queuing, scheduling, execution, and monitor-
ing of batch jobs. The system presents the client
with the image of a cohesive collection of resources,
which is uniformly accessed through a single inter-
face, in a location-transparent manner. The system
integrates distributed resources managed by a local
DRMS, preserving the local control over those re-
sources and adding the benefits of controlled resource
sharing across an organization.

The main contributions of this work are: (i) The
concept of abstract queue as the unit of aggregating
heterogeneous resources; (ii) An effective job queu-
ing and scheduling solution that supports heteroge-
neous resources located under multiple administrative
domains; (iii) An account mapping scheme for autho-
rization across domains. The proposed approach is a
step toward creating an environment in which the users
can say: “I want to run a job for which I have either
the source code of the application or the executable(s)
built for one or more platforms. I know the input files
needed by the application, but I do not (nor do I want
to) know the name of machine that can run the binary,

how much memory or how many CPUs it needs. All I
want is to get the job executed as quickly as possible.”

Aggregating independently managed resource into
an enterprise compute grid provides benefits that in-
clude (i) scalability: scale out capacity by aggregat-
ing individual clusters, preserving the capability of the
individual resources and sharing the workload across
multiple resources; (ii) flexibility: support incremental
growth as new resources are added across the organiza-
tion; (iii) location transparency: access enterprise-wide
resources regardless of their location; (iv) preservation
of local control: resources are locally owned and con-
trolled, e.g., access policies are defined locally.

The paper is organized as follows: in Section 2 we
present the proposed system, then describe the file
staging features in Section 3, the authorization fea-
tures in Section 4, and the resource brokering features
in Section 5. In Section 6 we describe the system’s fault
tolerance. The most relevant related work is surveyed
in Section 7, followed by an evaluation of the system
in Section 8 and by concluding remarks in Section 9.

2 The proposed system

In this section, we present the concepts on which
our resource virtualization solution is based, and de-
scribe the proposed system. The system aggregates
local resources, where each resource is managed by a
DRMS which implements the interface specified by the
POSIX standard IEEE 1003.2d-1994 Batch Environ-
ment [15, 16], which specifies the interface to a dis-
tributed batch queuing environment. This standard
has been enacted in 1994 and its updated version is
currently incorporated into the IEEE standard 1003.1-
2004. Henceforth, we call this standard the POSIX
Batch Interface.

The resources being aggregated can be computers or
clusters, located across an organization, that are locally
owned and controlled (via local usage policies), and can
be heterogeneous (different processor type, system and
application software). We call the aggregate resource,
along with the services of access control, job submis-
sion, scheduling and control, a virtual cluster, and call
our approach to building a virtual cluster Integral Man-
agement and Allocation of Grid Elements (IMAGE).
IMAGE provides the following services:

(1) consolidation of multiple clusters into a single vir-
tual cluster whose resources are the union of the
resources associated with each cluster;

(2) authentication, authorization and account map-
ping across multiple domains;

(3) resource brokering and monitoring: selecting a lo-
cal resource that meets the job’s requirements, ad-
hering to local policies of the individual resources,
and optimizing the global resource usage;

(4) file staging between the execution machine and the
submission machine.

2.1 IMAGE Architecture

Here we present the components of an IMAGE sys-
tem, their functions and relationships, and how IM-
AGE interfaces to the Globus Toolkit [10, 11] job ser-
vice.
An IMAGE system consists of four components: (1)

one master server; (2) one or more slave servers; (3)
one or more job execution machines under the control
of each slave server; (4) one or more clients that com-
municate with the master server.
The master server runs the virtual cluster service

(VCS) that aggregates the physical clusters. For high
availability, multiple instances of VCS may be run (see
Section 6). A slave server is a local DRMS that controls
either a cluster or a network of computers (the execu-
tion machines). The local DRMS together with the
controlled machines constitute a Grid Element. The
clients are either users or software tools that commu-
nicate with the master server to submit, query, and
control jobs. The IMAGE architecture is depicted in
Fig. 1. The VCS implements the POSIX batch in-
terface. Every DRMS also implements the POSIX
batch interface. DRMS that implement this interface
include PBS Professional [3], OpenPBS, Torque, and
MOAB [5]. Different DRMS can be located in dis-
tinct domains, as long as there is some trust relation-

Figure 1. The architecture of IMAGE

ship, which is needed for granting VCS users access
to the DRMS. Clients can access the VCS either di-
rectly, through the POSIX batch interface, or through
the Globus GRAM interface in conjunction with an
interface adapter (see also Section 2.3). The POSIX
command line interface includes commands to submit
jobs (qsub), get the job status (qstat), manage the job
(qalter and qsig), and cancel the job (qdel).

The VCS consists of two components: VCS server
and VCS scheduler. The VCS server keeps track of
the jobs in persistent queues, assigns to each job a
unique identifier, denoted by $PBS JOBID, routes the
jobs among the VCS queues and the DRMS queues,
performs access control and job monitoring; The VCS
scheduler selects the appropriate resource for each job
and instructs the VCS server to route the job that re-
source, as described in Section 5.1.

2.2 Abstract queues

Resource management systems may contain two
types of queues: execution queues, out of which jobs are
dispatched to one or more execution hosts, and rout-
ing queues, out of which job are dispatched to other
queues. Routing queues can be used to route jobs to
queues located either in the same resource management
system or in another system.

The unit of aggregating resources in IMAGE is an
abstract queue. An abstract queue represents a col-
lection of resources (CPU, memory, software licenses),
along with a persistent queue of jobs using – or waiting
to use – those resources, and a set policies governing
the use of the resources by the jobs. The policies may
include access control list of authorized users, schedul-
ing policies (e.g., job sort-order), as well as job-level,
user-level, and queue-level limits on the amount of re-
sources that can be assigned to a job, user, or queue.

An abstract queue differs from a concrete queue
in that there can be several concrete queues (routing
or execution queues) implementing a single abstract
queue. For example, in IMAGE an abstract queue is
implemented by two concrete queues: (i) a local queue
defined at the DRMS level, out of which jobs are dis-
patched to the hosts managed by the DRMS; (ii) a
routing queue defined at the VCS level, through which
jobs are routed to the corresponding local queue in the
DRMS; this routing queue acts as a stub queue for the
DRMS queue. Each grid element can be thought of as
a collection of queues, where each queue has its access
control and resource policies. Thus, the virtual cluster
is the union of all the abstract queues, along with the
aggregation services mentioned above.

While other work on grid scheduling considers queue

hierarchies, e.g., in [19] a network of grid queues and
local queues is considered, the abstract queue is a novel
concept which allows to have a logical queue divided
into several concrete queues. In IMAGE, the abstract
queue is divided into a part located in the VCS (the
stub queue) and one located in the DRMS (the local
queue). Having the VCS scheduler dispatch jobs to the
stub queue rather than to the DRMS execution queue
has benefits for reliability and performance: sending a
job from the VCS to a DRMS involves network com-
munication, while the stub queue is local to the system
running the VCS scheduler. By communicating with
the stub queue rather than the DRMS local queue, the
VCS scheduler takes a shorter time to dispatch jobs
and is insulated from transient communication prob-
lems that may occur between the VCS and DRMS.
The stub queue acts like a “buffer” for the DRMS lo-
cal queue. The abstract queue enables efficient and
reliable scheduling and does not affect the scheduling
decisions. The VCS scheduler makes decisions as to
what local queue to dispatch the job, but sends the job
to the stub queue rather than the DRMS local queue.

Resource properties, resource usage, and scheduling
policies are defined for the abstract queues. The VCS
server maintains the input queue of jobs. The VCS
scheduler fetches jobs from the input queue and makes
scheduling decisions in terms of abstract queues, then
dispatches each job to the VCS stub queue correspond-
ing to the abstract queue; the stub queue then routes
the job to the DRMS local queue.

Consider the example given in Fig. 2. Two DRMS,
called DRMS1 and DRMS2, have two queues called Qa
and Qb, and these queues are accepting jobs from the
VCS. The VCS is then configured such that the routing

Figure 2. Job routing through queues

queue input queue has a destination for each DRMS. In
Fig. 2, there are two destination queues, DRMS1.Qa
and DRMS2.Qb, which are in turn routing queues
whose destinations are respectively Qa in DRMS1 and
Qb in DRMS2. The VCS scheduler routes jobs to either
DRMS1.Qa or DRMS2.Qb, then DRMS1.Qa routes the
jobs to Qa and DRMS2.Qb to Qb. The abstract queue
Qa is thus realized by way of the local queue Qa in
DRMS1 and the stub queue DRMS1.Qa in the VCS.
The VCS provides the following functionality:

• maintains a persistent queue of the jobs submitted
to the collection of managed clusters;

• tracks the status of the jobs across the entire job
life cycle (from pending to running and to the exit
status);

• monitors the status of the grid elements and
fetches their access policy;

• schedules jobs to run on a grid element that meets
the job requirements; scheduling is done such that
it obeys global policies (defined at VCS level) as
well as local policies;

• stages files between the VCS machine and the ex-
ecution hosts;

• maps the job owner account to an appropriate ef-
fective user account on the grid element.

2.3 Integration with the Globus Toolkit

IMAGE can be integrated in a Grid environment
by presenting it as a job execution service for the ag-
gregated resources. For example, IMAGE is easily inte-
grated with the Globus Toolkit’s Grid Resource Alloca-
tion and Management [8] component (GRAM), either
the pre-web services and the web-services version [14] of
GRAM. This is done using a scheduler adapter mod-
ule that converts the GRAM protocol to the POSIX
Batch interface (see Fig. 1). The module provides the
functions of submitting, querying, and deleting a job.

3 File staging

File staging occurs along two paths: (i) between the
client machine and VCS; (ii) between VCS and grid ele-
ment. For the first path one can use file transfer frame-
works such as GridFTP [2, 1], while for the second
path (which traverses a LAN) one can use SSH-based
file copying (scp), or a distributed file system that in-
cludes the VCS and the local resource. File transfer
frameworks that use multi-stream protocols (such as

GridFTP) do not necessarily offer significantly supe-
rior performance in a LAN environment, since the LAN
bandwidth does not grow linearly with the number of
streams ([4]). Therefore, we use the scp tool for staging
between the VCS and the Grid Elements.

3.1 Specifying staging

File staging is specified by VCS directives included
in the job submission file. The directives specify the
files to be staged between VCS and the grid element.
For example, assume that a job with the identifier
$PBS JOBID is owned by user1 who is mapped to the
effective user grid1, and the job has the input files in
the in subdirectory and creates the result files in the
out subdirectory. The following directive describes the
file staging for this job:

#VCS -v VCS STAGING=1,

VCS JOB DIR=/home/user1/in,

VCS STAGEOUT=out, VCS JOB OUT=../

VCS translates this directive into DRMS-specific di-
rectives that perform two actions: (i) file staging from
the VCS directory /home/user1/in to the grid element
directory $HOME/$PBS JOBID/in, where $HOME is
the home directory of grid1; (ii) file staging from the
grid element directory $HOME/$PBS JOBID/out to
the VCS directory /home/user1/out. These directives
are inserted by the scheduler adapter for jobs submit-
ted via Globus GRAM.

4 Authorization and account mapping

IMAGE supports multi-domain authorization,
whereby each local DRMS defines an access list for the
queue accessible from the the VCS. The VCS defines
its own list of authorized users, which is related to
the Globus Toolkit grid map-file. In other words, each
Grid user has her/his Grid identity mapped to an
account on the VCS, by way of the grid map-file, such
that every account defined by this mapping is also
authorized by the VCS access list. Users from other
organizations are required to present a Grid credential,
while users from the same organization have the option
of authenticating based on user name and password.
VCS manages for each job the attributes: (i) owner:
the user account on the VCS who submits the job,
(ii) effective user: the user account under which the
job runs on the grid element, as determined by the
VCS and the DRMS access control policy. Unlike the
owner, the effective user depends on the grid element
selected for the job. IMAGE determines the effective
user in accordance with the DRMS policy, as follows:

• for each job owner, VCS maintains a map like this:

Map(user1) = (

grid1@DRMS1.Qa, grid2@DRMS2.Qb, . . .).

indicating that owner user1 may run on queue
Qa of DRMS1 as user grid1 and on queue Qb of
DRMS2 as grid2.

• Every DRMS maintains for each queue a list of
authorized users, e.g., DRMS1 maintains for the
queue Qa a list like this:

ACL(DRMS1.Qa) = (user1@V CS, ...).

• VCS scans the entries in Map and looks up user1
in the corresponding ACL lists, until a DRMS
and queue containing user1 is found. VCS then
sets the effective user attribute of the job. For
the above example, VCS sees grid1@DRMS1.Qa
in Map then finds user1 in ACL(DRMS1.Qa), so
it maps user1 to grid1@DRMS1.Qa.

With this scheme, users can be added to VCS without
having to reconfigure the local DRMS.
Data integrity and privacy are supported using three

techniques: (i) For some job owners, VCS makes
sure that the effective user to whom these owners are
mapped is not shared with another job owner; (ii) For
the other job owners, for which the effective user can
be shared by several owners, VCS makes sure that
on every Grid Element there is only one owner at a
time using the effective user account; (ii) For all own-
ers, each job executes on the grid elements under a
directory name derived from the unique job identifier
$PBS JOBID and the files staged for a job are removed
at the end of the job from the grid element.

4.1 Authorization for file staging

File staging between the VCS machine and the ex-
ecution machine is done with the secure copy tool scp.
Due to the account mapping between the job owner on
VCS and the effective user on the grid element, autho-
rization needs to be granted to the effective user to scp
to/from VCS. For example, if the job owner user1 is
mapped to the effective user grid1 on the grid element
GE1, then, in order to allow staging of job files be-
tween VCS and GE1, the file authorized keys of user1
on VCS contains the public key of user grid1. To pro-
tect the account user1 on VCS, the VCS is configured
such that that grid1 cannot execute any command as
user1 except for scp to/from the directories allocated
to the job running as grid1.

5 Resource brokering and monitoring

Resource brokering includes: (i) maintaining a per-
sistent queue of the jobs; (ii) maintaining the state of
the grid elements; (iii) scheduling jobs queued by the
VCS. Next we describe these operations.

5.1 Job scheduling

Job scheduling maps jobs to resources. Schedul-
ing is performed by VCS in cooperation with the local
DRMS. When jobs enter IMAGE, they are placed in an
input queue which is organized as a priority queue. The
rank of a job in the priority queue is determined by sev-
eral attributes, some of which are dynamic, including
the priority of the job owner, the time the job has been
pending in the queue, and the priority assigned to the
job by the owner. Jobs whose pending time exceeds a
configurable threshold are marked as urgent jobs. Job
scheduling occurs as follows:

• The VCS scheduler sorts the jobs in priority order
and schedules them in order of decreasing priority.
If there are no urgent jobs, jobs of lower priority
can backfill; otherwise, strict priority order is en-
forced.

• Resource selection: for each selected job, the
VCS scheduler tries to find a suitable grid ele-
ment, based on the job’s requirements, the re-
source state, and the access control policy.

• If a grid element is found, the VCS scheduler maps
the job owner to an effective user authorized by
the grid element, as described in Section 4, and
parses the job’s file staging directives as described
in Section 3.1.

• The VCS scheduler dispatches the job to the se-
lected DRMS, by way of the stub queue on the
VCS. The local DRMS, upon receiving the job,
selects one or more execution hosts (based on the
job’s requirement) to which it maps the job, and
runs the job.

• The VCS scheduler re-queues the jobs that fail be-
cause the resources to which they are dispatched
become unavailable.

Resource selection is important in a Grid envi-
ronment, where resources are heterogeneous and the
scheduler must find which of the resources have the
properties required by the job. In IMAGE, this issue
is addressed as follows. Jobs have a requires attribute

which is a boolean expression whose terms define prop-
erties of the resource (similar to Condor classads [24]).
For example,

requires = ((OpSys == “Linux′′) &&

(Kernel => “2.6.5′′) && (CPU == “i686′′))

In case the user submits the source code of an appli-
cation instead of the executable, requires specifies also
compilers and other tools. In the resource selection
step, the job scheduler evaluates the job’s requires ex-
pression for the grid elements (which publish resource
information with the VCS) and screens out those grid
elements that do not satisfy it.

5.2 Resource Monitoring

The status of all grid elements is tracked by the VCS
to determine the following: (i) the availability of the
resources (nodes that are up and for which remote sub-
mission is enabled); (ii) the status of the jobs, the re-
sources that are assigned to jobs, and those that are
free for new jobs; (iii) the access control associated with
the queues on each grid element. All jobs submitted
to the VCS can be queried to determine the current
status, the trace of the events underwent by the job,
and the exit status (if the job has completed).

6 Fault tolerance

The Virtual Cluster Service is a mission-critical
component of an enterprise Grid, thus its services must
survive the occurrence hardware and software failures.
The IMAGE system is designed to be fault-resilient.
Specifically, the master server is implemented as a log-
ical server consisting of multiple physical servers. Typ-
ically, the logical server is implemented using a primary
server along with a secondary server, with failover from
the primary to the secondary server, when the primary
server stops responding to heartbeat queries. To
ensure that the physical servers work in a mutually-
exclusive mode, the heartbeat can use a redundant con-
nection between the servers.
Clients tools can access a primary/secondary server

in two ways: (i) by explicitly specifying the physical
server name, corresponding to the primary and sec-
ondary sever; (ii) by using the round-robin DNS tech-
nique, which allows mapping the name of the logical
server to two IP addresses, one for the primary server
and one for the secondary server. With round-robin
DNS, the DNS maps a host name to a list of IP ad-
dresses, whose order rotates with subsequent queries.
Under method (ii), the client scans the list of IP ad-
dresses obtained from DNS until it finds one that it can

connect to. In contrast, under method (i), the client
needs to be enhanced to translate the logical server
name into a list of physical server names (each with a
single IP address) and traverse the list until an up-and-
running server is found.

7 Related Work

In this section we survey related work on managing
distributed resources. We consider four products or
projects: Platform LSF multicluster, the Condor sys-
tem, Sun N1 Grid Engine, and the GridWay project.

7.1 Platform LSF Multicluster

The Platform LSF Multicluster [17] is a mature,
powerful and stable cluster aggregation solution. Un-
like IMAGE, where there is a master server dispatching
jobs to the local resource managers, LSF multicluster
has a decentralized architecture, where every cluster
can potentially communicate with every other cluster.
While this allows for more balanced job submission, it
creates management problems, since a change made to
the configuration or policies on a cluster needs to be
communicated to, or discovered by, all the other clus-
ters. LSF supports user account mapping across clus-
ters and failover of the scheduler component. It does
not implement the POSIX batch interface, and sup-
port for parallel applications is distributed separately.
Overall, LSF Multicluster is a robust solution for ag-
gregating enterprise-wide resources, and IMAGE is an
open source alternative to it.

7.2 Condor

The Condor [24] system manages resources within
a single administrative domain, being focused toward
high throughput computing and networks of computers
that are not dedicated to running batch jobs. A set of
machines is combined to form a pool, under the control
of a central manager, and whose resources are matched
by the central manager against the requirements of the
job requests from clients. Condor allows to combine
local access policies (defined by the owner of each ma-
chine) with global policies (defined in the central man-
ager). Condor supports both serial and parallel jobs,
using the concept of universe (which denotes a job exe-
cution environment) but requires a dedicated scheduler
and dedicated resources for the latter. Condor-G [23] is
a Condor universe that combines the intra-domain re-
source and job management capability of Condor with
the inter-domain resource sharing and security capa-
bility of the Globus Toolkit. The main limitation of

Condor-G as a multi-domain resource management sys-
tem is that the negotiator, the component of the cen-
tral manager that selects a resource for a job, is state-
less, which makes it extremely difficult to implement
scheduling policies such as “before scheduling the next
job to a particular resource, wait for that resource to
update its state to reflect the reception of the previous
job”. In the absence of such a rule, it is likely that a
resource will be either over- or under-subscribed.

7.3 Sun N1 Grid Engine

Sun N1 Grid Engine [22] is a scalable and robust
distributed resource management system, supporting
both high throughput and flexible scheduling policies.
In addition, it supports the Distributed Resource Man-
agement Application API (DRMAA) [12], a proposed
Global Grid Forum standard for integrating applica-
tions into a DRMS. However, the usage of the N1 Grid
Engine in a multi-domain setting is hindered by two
issues: (i) it does not support user account mapping;
(ii) it has non-orthogonal support for parallel jobs. Be-
cause of (i), users must have the same account on all
the hosts, which is problematic to achieve across ad-
ministrative domains. Moreover, while it is possible
to run parallel jobs under the N1 Grid Engine, this
requires the administrator to define a parallel environ-
ment under which parallel jobs execute. This is unlike
systems such as PBS Professional and Torque, which
treat parallel jobs simply as jobs requiring more than
one processor and do not require a special environment
for parallel jobs. Treating parallel jobs as a special case
limits the types of jobs that can use it.

7.4 GridWay

GridWay [13] is a user-level framework aimed at fa-
cilitating the execution of applications on Grids based
on the Globus Toolkit. A submission agent manages
the jobs on the submission machine: using resource
information extracted from the Monitoring and Dis-
covery Service (MDS) [7, 25], the agent selects a re-
source for each job and submits the job to the selected
resource. Each application communicates its require-
ments (as required resource attributes) and its prefer-
ences about resources to the framework. The submis-
sion agent selects a resource by matching the applica-
tion’s requirements against the resource attributes.
Unfortunately, the GridWay framework relies on ex-

cessively strong assumptions about the applications be-
ing run, the information provided by MDS, and the ver-
sion of Globus Toolkit installed on the resources. The
application is assumed to generate performance pro-

file data to help the submission agent with migrating
the jobs when the performance on a resource degrades.
GridWay also assumes that all the information needed
by the submission agent to select a resource is available
from Globus MDS. This is questionable, given that dif-
ferent sites may publish different information. More-
over, it assumes that the list of authorized users on a
grid resource is available through MDS, which may not
be consistent with the policy of the local resource.
GridWay is tightly integrated with Globus, and re-

lies on components that have either been phased out,
such as the GASS server (for file staging), or have
been changed and are not backward-compatible, such
as MDS (version 4.0 of Globus does not include LDAP-
based MDS, only web-services-based based MDS).
GridWay scheduling decisions are likely to be impre-
cise because it employs multiple submission agents that
work in an uncoordinated manner creating the risk of
conflicting decisions, e.g., two submission agents decid-
ing to submit a job to the same resource.

8 Experimental Evaluation

We have evaluated the efficacy of IMAGE on a real-
life simulation performed at the request of a compu-
tational biologist. The problem has been a simula-
tion involving a genome-wide computation on an input
containing 15 million lines of tagged DNA sequences.
For each input line, the simulation generates an out-
put line. Lines can be processed independently and
processing a line takes about T0 = 1.1 seconds on a
resource GE1 with a queue Qa with P1 = 64 CPUs
and 4/3T0 on a resource GE2 with a queue Qb with
P2 = 36 CPUs. Running this program serially on GE1
will require 15× 106 × 1.1 seconds ≈ 191 days.
We have reduced the time from 191 days to 55.5

hours using two techniques. First, we have divided the
input into chunks of n = 10, 000 lines, and defined a
job for each chunk, so there are N = 1, 500 jobs and
each job takes the time t0 on GE1 and 4/3t0 on GE2,
where t0 = n×T0 = 10, 000×1.1 = 11, 000 seconds i.e.,
3.05 hours. Had we solved the problem only on GE1,
the time would have been t0 × (N/P1) = 71.5 hours.
The second technique for reducing the execution

time has been to use IMAGE to run the jobs concur-
rently on GE1 and GE2. Assuming perfect load balanc-
ing, and letting N1 and N2 be respectively the number
of jobs executed by GE1 and GE2, thus N = N1+N2,
we obtain the execution time T on GE1 and GE2:

T = max

{

t0 ×
N1

P1

,
4t0
3
×

N2

P2

}

.

The optimum time Tmin is reached when t0 × N1/P1

equals 4/3t0 × (N −N1)/P2. Therefore,

Tmin =
4N t0

4P1 + 3P2

=
4× 1, 500× 3.05

4× 64 + 3× 36
= 50.27 hours

The time measured for IMAGE has been 55.5 hours,
the 10% difference with respect to the ideal time being
due to the combined contribution of the time to stage
the files, the time to rerun some jobs due to resource
failure, imperfect load balancing, the VCS server delay
in sensing the resource status, and the time taken by
the VCS scheduler.

9 Conclusions

We have presented a system for aggregating hetero-
geneous clusters from multiple administrative domains
into a virtual cluster. Attributes of IMAGE include
scale, safety, small footprint, and reliability. Resource
scale-out stems from scheduling applications across re-
sources from separate administrative domains; Safety
is due to the lack of privilege-elevation vulnerabilities
(e.g., set-uid programs) and running the VCS sched-
uler as a non-privileged user. The failover capability
and the persistent state of the VCS server provide reli-
able service. In addition, IMAGE is a standards-based
solution, which allows it to work with multiple DRMS.

References

[1] W. Allcock. GridFTP Protocol Specification.
http://www.gridforum.org/documents/GFD.20.pdf.

[2] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak,
I. Foster, C. Kesselman, S. Meder, V. Nefedova,
D. Quesnel, and S. Tuecke. Data management and
transfer in high-performance computational grid envi-
ronments. Parallel Computing, 28(5):749–771, 2002.

[3] Altair Engineering. PBS Professional Overview.
http://www.altair.com/software/pbspro.htm.

[4] H. Casanova. Modeling large-scale platforms for the
analysis and the simulation of scheduling strategies.
In Procs. 6th Workshop on Advances in Parallel and
Distributed Computational Models, 2004.

[5] Cluster Resources. MOAB and Torque Documenta-
tion. http://clusterresources.com.

[6] CoreGRID. European Network of Excellence.
http://www.coregrid.net.

[7] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kessel-
man. Grid Information Services for Distributed
Resource Sharing. In Procs. 10th IEEE Symp.
on High-Performance Distributed Computing (HPDC-
10). IEEE Press, Aug. 2001.

[8] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman,
S. Martin, W. Smith, and S. Tuecke. A Resource Man-
agement Architecture for Metacomputing Systems. In

D. Feitelson and L. Rudolph, editors, Job Schedul-
ing Strategies for Parallel Processing, volume 1459
of Lecture Notes in Computer Science, pages 62–82.
Springer-Verlag, 1998.

[9] I. Foster and C. Kesselman. Globus: A metacomput-
ing infrastructure toolkit. The International Journal
of Supercomputer Applications and High Performance
Computing, 11(2):115–128, Summer 1997.

[10] I. Foster, C. Kesselman, and S. Tuecke. The anatomy
of the Grid: enabling scalable virtual organizations.
Intl. Journal of High Performace Computing Applica-
tions, 15(3):200–222, 2001.

[11] Globus Alliance. Globus Toolkit Documentation.
http://www.globus.org, 2006.

[12] H. Rajic, (ed.). Distributed Resource Management
Application API Specification 1.0. Global Grid Forum
Recommendation GFD.022, June 2004.

[13] E. Huedo, R. S. Montero, and I. M. Llorente. A frame-
work for adaptive execution in grids. Software - Prac-
tice and Experience, 34(7):631–651, 2004.

[14] IBM. The WS-Resource Framework. http://www-
128.ibm.com/developerworks/webservices/library/
specification/ws-resource/ws-wsrfpaper.html, 2006.

[15] IEEE. IEEE 1003.2d-1994 Standard for Information
Technology. http://standards.ieee.org/reading/ieee/
std public/description/posix/1003.2d-1994 desc.html.

[16] IEEE. Portable Operating System Interface
(POSIX) Standards. http://standards.ieee.org/ cat-
alog/olis/arch posix.html, 2003.

[17] Platform Computing. Using Platform LSF MultiClus-
ter. http://www.platform.com/products/LSF/, 2006.

[18] D. A. Reed. Grids, the TeraGrid, and Beyond. Com-
puter, 36(1):62–68, 2003.

[19] H. Shan, L. Oliker, and R. Biswas. Job supersched-
uler architecture and performance in computational
grid environments. In Supercomputing 2003 Confer-
ence (SC’03), November 15-21, Phoenix USA, 2003.

[20] Sun Microsystems. Sun Powers the Grid, 2003.
[21] Sun Microsystems. Understanding data-

grid architecture for higher education.
http://www.sun.com/products-n-solutions/edu/
whitepapers/pdf/datagrid.pdf, February 2005.

[22] Sun Microsystems. Sun N1 Grid Engine.
http://www.sun.com/grid, 2006.

[23] D. Thain, T. Tannenbaum, and M. Livny. Condor and
the Grid. In F. Berman, G. Fox, and T. Hey, editors,
Grid Computing: Making the Global Infrastructure a
Reality. John Wiley & Sons Inc., 2003.

[24] D. Thain, T. Tannenbaum, and M. Livny. Distributed
Computing in Practice: The Condor Experience. Con-
currency and Computation: Practice and Experience,
17(2–4):323–356, 2005.

[25] G. von Laszewski, S. Fitzgerald, I. Foster, C. Kessel-
man, W. Smith, and S. Tuecke. A Directory Service for
Configuring High-Performance Distributed Computa-
tions. In Proceedings of the 6th IEEE Symposium on
High-Performance Distributed Computing, pages 365–
375, Portland, OR, 5-8 Aug. 1997.

